The correct option is A 4,5,6
Let the sides of a triangle be AC=n,AB=n+1,BC=n+2 where n∈N
Smallest angle is B and largest one is A
Given: A=2B
Also, A+B+C=180∘
3B+C=180∘⇒C=180∘−3B
Now, using sine rule, sinAn+2=sinBn=sinCn+1
⇒sin2Bn+2=sinBn=sin(180∘−3B)n+1
⇒sin2Bn+2=sinBn=sin(3B)n+1
Now, sin2Bn+2=sinBn⇒2sinB.cosBn+2=sinBn⇒cosB=n+22n⋯(i)
Now, sinBn=sin(3B)n+1
⇒sinBn=sinB(3−4sin2B)n+1
⇒n+1n=3−4(1−cos2B)⇒n+1n=−1+4cos2B⋯(ii)
Now, from equation (i) and (ii), we get n+1n=−1+4(n+22n)2
⇒n+1n+1=(n2+4n+4n2)
⇒2n+1n=n2+4n+4n2
⇒2n2+n=n2+4n+4
⇒n2−3n−4=0⇒(n−4)(n+1)=0
So, we have n=4 or n=−1
Only possiblity is n=4
Hence the sides are 4,5,6