Let the sides of the △ABC be a=n,b=n+1,c=n+2, where n is natural number. Then C is the greatest and A the least angle.
As given C = 2A
∴sinC=sin2A=2sinAcosA
∴kc=2kab2+c2−a22bc
or b2=a(b2+c2−a2).
Substituting the values of a, b, c, we get
(n+1)(n+2)2=n[(n+1)2+(n+2)2−n2]
or (n+1)(n+2)2=n[n2+6n+5]=n(n+1)(n+5)
Since n≠−1, we can cancel n+1
Thus (n+2)2=n(n+5)
or n2+4n+4=n2+5n.
This gives n=4
Hence the sides are 4,5 and 6.