Let the point of contact of sides of triangle be P(at21,2at1),Q(at22,2at2) and R(at23,2at3)
Two of the coordinates of point of intersection of the sides of triangle are
B(at2t3,a(t2+t3)),C(at3t1,a(t3+t1))
Let they lie on the parabola (y−k)2=4b(x−h)
Substituting B and C in the equation of parabola
(y−a(t2+t3))2=4b(x−at2t3).........(i)(y−a(t3+t1))2=4b(x−at3t1)...........(ii)
Let the third angular point be (x,y)
x=at1t2......(iii)y=a(t1+t2).........(iv)
We need to eliminate
Subtracting (ii) from (i)
(y−a(t2+t3))2−(y−a(t3+t1))2=4b(x−at2t3)−4b(x−at3t1)a((t1+t2)+2at3−2k=4bt3
using (iv)
y+2at3−2k=4bt3t3=y−2k4b−2a...............(v)
Mutiplying (i) by t1 and (ii) by t2 and subtracting
⇒−a2t1t2+a2t23+k2−2akt3=−4bh
substituting (iii) and (v)
−ax+a2(y−2k4b−2a)2+k2−2ak(y−2k4b−2a)=−4bh(y−2k)2−2ak(y−2k)(4b−2a)=(4b−2a)2(ax−4bh−k2)