The sides of a triangle are in the ratio 3:5:7 and its perimeter is 300 m. find the area of the triangle.
Given: Ratio =3:5:7
Let ′x; be the constant ratio.
Then, the sides of the given triangle are 3x,5x, and 7x.
Perimeter =300 m (Given)
3x+5x+7x=300 [∵ Perimeter = Sum of all sides ]
⇒15x=300
⇒x=30015=20
Sides are:
3x=3(20)=60 m
5x=5(20)=100 m
7x=7(20)=140 m
Perimeter =300 m
Semi-perimeter, s=3002=150 m
Here, the three sides are
a=60 m,b=100 m,c=140 m
or, Semi-perimeter, s=60+100+1402=(60+100+140)2=150
Using Heron's Formula, Area of the triangle =√s(s−a)(s−b)(s−c)
=√150(150−60)(150−100)(150−140)
=√150(90)(50)(10)
=√15×15×3×100×100
=1500√3
∴ Area of the given triangle =1500√3 m2