The sides of two triangles are 35 cm, 53 cm, 66 cm and 56 cm, 33 cm,65 cm respectively. Area of circle is equal to sum of the areas of these two triangles. Find the radius of the circle (√3=1.73).
Let the sides of the first triangle be a,b and c.
a=35 cm
b=53 cm
c=66 cm
Perimeter of triangle 2s=35 cm+53 cm+66 cm
⇒2s=154 cm
⇒s=1542=77 cm
⇒s−a=77 cm−35 cm=42 cm
s−b=77 cm−53 cm=24 cm
s−a=77 cm−66 cm=11 cm
By Herons formula,
Area of first triangle,
Δ1=√s(s−a)(s−b)(s−c)
⇒Δ1=√77 cm×42 cm×24 cm×11 cm
⇒Δ1=√77×42×24×11 cm2
⇒Δ1=√7×11×7×6×6×2×2×11 cm2
⇒Δ1=11×7×6×2 cm2
⇒Δ1=924 cm2 ---(2)
Let the sides of the first triangle be
Let the sides of the second triangle be x,y and z.
x=56 cm
y=33 cm
z=65 cm
Perimeter of triangle 2s=56 cm+33 cm+65 cm
⇒2s=154 cm
⇒s=77 cm
⇒s−x=77 cm−56 cm=21 cm
⇒s−a=77 cm−33 cm=44 cm
⇒s−a=77 cm−65 cm=12 cm
By Herons formula,
Area of first triangle,
Δ2=√s(s−x)(s−y)(s−z)
⇒Δ2=√77 cm×21 cm×44 cm×12 cm
⇒Δ2=√77×21×44×12 cm2
⇒Δ2=√7×11×7×3×11×4×4×3 cm2
⇒Δ2=11×7×4×3 cm2
⇒Δ2=11×7×4×3 cm2
⇒Δ2=924 cm2---(2)
Let the radius of required circle be r.
⇒ Area of circle is =πr2 sq. units
It is given that,
Area of circle is equal to sum of the areas of triangles.
⇒πr2=Δ1+Δ2
⇒πr2=924 cm2+924 cm2
⇒227r2=1848 cm2
⇒r2=722×1848 cm2
⇒r2=7×84 cm2
⇒r2=7×4×3×7 cm2
⇒r=7×2×√3 cm
⇒r=14×1.73 cm [Since, √3=1.73]
⇒r=24.22 cm
Hence, the radius of required circle is 24.22 cm.