The correct option is A 128
The coefficient of the 2nd,3rd and 4th terms in the expansion are mC1,mC2 and mC3, which are given in A.P.
Hence, 2 mC2=mC1+mC3
⇒2m(m−1)2!=m+m(m−1)(m−2)3!
⇒m(m2−9m+14)=0
⇒m(m−2)(m−7)=0
⇒m=7 (∵m≥3 for mc3)
Now, 6th term in the expansion, when m=7, is
7C5[√2log (10−3x)]7−5×[5√2x−2log3]5=21
⇒7×62![2log(10−3x)×2(x−2)log 3]=21
⇒2log(10−3x)+(x−2)log 3=1=20
⇒log(10−3x)+(x−2)log 3=0
⇒log(10−3x)(3)x−2=0
⇒(10−3x)×3x×3−2=1
⇒10×3x−(3x)2=9
⇒(3x)2−10×3x+9=0
⇒(3x−1)(3x−9)=0
⇒3x−1=0⇒3x=1=30⇒x=0
⇒3x−9=0⇒3x=32⇒x=2
Hence, x=0 or 2.
Now, when x=2,
[√{2log (10−3x)}+5√{2(x−2)log3}]m
=[1+1]7=128
and when x=0,
=[√2log (10−3x)+5√2(x−2)log3]m
=[√2log 9+5√2−2 log 3]7
=⎡⎣2log 92+12log 95⎤⎦7>27
Hence, the minimum value is 128.