The correct option is
C ±1√2solve:
Given, y=x2 is a parabola
it Parametric coordinate
p(a,a2)
slope of tangent, dydx=2x
⇒ slope of normal =(−dxdy)x=a=−12a
eqn. of normal ⇒(y−a2)=−12a(x−a)
Lel Q be the point where it intersect
parabola
⇒Q(−(12a+a),1+1(4a2)+a2)
so,length of PQ,l(a)=√(−12a−a−a)2+(1+14a2+a2−a2)2
⇒l2(a)=(1+4a2)316a4
for, length of normal chord be shortest, l2(a) is also shortest and dl2(a)da=0 at that Point,
⇒dl2(a)da=(2a2−1)(4a2+1)24a5=0
⇒a=+1√2,−1√2
So, slope of shortest normal chord =−12a
=±1√2