The correct option is D +––√2
Given:
4x3=27y2
differentiatingw.r.t.x
12x2=54yy′
t
The line is tangent atP(3t2,2t3)andnormalat(3t21,2t31)
dydx=2(9t4)9(2t3)=1
equationtotangentP(t)is
y−2t3=t(x−3t2)
⇒tx−y=t3........(i)
EquationtonormalatQ(t1)is
y−2t31=−1t1(x−3t21)
⇒x+t1y=2t41+3t21...........(ii)
(i)and(ii)areidentical
t1=−1t1=t32t41+3t21
⇒t2=2t4+3t2ort1=−1t
⇒t6=2+3t2
⇒t6−3t2−2=0
⇒t2=2
t=±√2