The correct option is C y=xtan−1(logcx)
We have, dydx=yx−cos2(yx)
Putting y=vx, so that
dydx=v+xdvdx,
∴v+xdvdx=v−cos2v
⇒dvcos2v=−dxx
⇒sec2vdv=−1xdx
On integration, we get
tanv=−logx+logc
⇒tan(yx)=−logx+logc
This passes through (1,π/4), therefore,
1=logc
So, tan(yx)=−logx+1
⇒tan(yx)=−logx+logc
⇒y=xtan−1(logcx)