The slope of the tangent of the curve y2exy=9e-3x2 at -1,3 is
-152
-92
15
152
92
Explanation for the correct answer:
Compute the slope:
y2exy=9e-3x2
Differentiate with respect to x
2yexydydx+y2exy(y+xdydx)=18e-3x
Substitute x=-1,y=3 in this equation we get,
2×3e-3dydx+9e-33-dydx=-18e-3
⇒ 6dydx+27-9dydx=-18
⇒ -3dydx=-45
⇒ dydx=15
Hence, the slope of the tangent is 15.
Hence, option C is the correct answer.