The correct option is B 1,2
Given curve is xy+ax−by=0
Slope of tangent at (1,1) is x.dydx+y+a−b.dydx=0
(dydx)(1,1)=−[(a+y)x−b](1,1)=−(a+1)1−b
∴−(a+1)1−b=2
So, 2b−a=3 ..........(1)
∵(1,1) lies on curve xy+ax−by=0
∴a−b=−1 .........(2)
From (1) and (2), we get
a=1,b=2
Hence, option 'A' is correct.