The correct option is B 2
Letf(x)=x2−2x−3andg(x)=x3−2x2−nx−3.f(x)andg(x)willhaveanHCFifanyofthefactorsoff(x)dividesg(x)completely.Nowf(x)=x2−2x−3=(x−3)(x+1)⇒x=3,−1.∴Either(x−3)or(x+1)orbothwillbeafactorofg(x).∴g(3)andg(−1)shouldbezero.Sog(3)=27−18−3n−3=0⇒n=2andg(−1)=−1−2+n−3=0⇒n=6∴smallervalueofnis2(Ans)