The smallest positive root of the equation √sin(1−x)=√cosx is
The given equation is possible if sin(1−x)>0and cos(x)>0
Squaring, we get sin (1 - x) = cos x= sin (π2−x)
⇒ 1 - x = nπ + (−1)n (π2−x) where n ∈ l
But for n = 2m (m ∈ l) we get no value of x
1 - x = (2m + 1) π - (π2−x)
⇒ x = 12 - (4m+14)π(m∈l)
If m≥0, x < 0
for, m = -1, x = 12+3π4,
1 - x = 12−3π4
So that sin(1-x) = sin (12+π4−π)
= -sin (π4+12)<0
for m = -2, x = 12+7π4, 1 - x = 12−7π4
so that, sin(1-x) = sin (12+π4−2π)>0
and cosx = cos (2π−π4+12)>0
Hence, x = 12+7π4 is the smallest positive root of the given equation.