The correct option is D 14
25,2234,2012,1814,⋯
⇒1004,914,824,734,⋯
The sequence is an A.P., where a=25,d=−94
Now, Tn=a+(n−1)×d
⇒Tn=25+(n−1)×(−94)⇒Tn=25+94−9n4⇒Tn=1094−9n4
When Tn is negative,
1094−9n4<0⇒n>1099
As 1099>12, so T13 will be the first negative term.
Therefore, T12 will be the smallest positive term.
T12=25+(12−1)×(−94)⇒T12=14
Hence, the smallest positive term is 14.