∣∣x2−5x+7−p∣∣=6+∣∣x2−5x+1−p∣∣
or, ∣∣(x2−5x+1−p)+6∣∣=∣∣x2−5x+1−p∣∣+|6|
We must have
6(x2−5x+1−p)≥0 ∀ x∈[−1,3]
⇒x2−5x+(1−p)≥0 ∀ x∈[−1,3]
y=x2−5x+(1−p) is an upward parabola with vertex at (52,−p−214)
52∈[−1,3]
∴−p−214≥0
⇒p+214≤0
⇒p≤−214
∴p∈(−∞,−214]
⇒ The smallest value of (−8p7)=−87×−214=6