No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3π+1π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2π+1π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3π+1π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C3π+1π2 Let I=∫32−1|xsin(πx)|dx=∫0−1|xsin(πx)|dx+∫10|xsin(πx)|dx+∫321|xsin(πx)|dx For, −1<x<0;−π<πx<0⇒xsin(πx)>0 0<x<1;0<πx<π⇒xsin(πx)>0 1<x<32;π<πx<3π2⇒xsin(πx)<0 Therefore, on integrating, I=∫0−1xsin(πx)dx+∫10xsin(πx)dx−∫321xsin(πx)dx Let, ∫xsin(πx)=−xπcos(πx)+∫cos(πx)πdx=−xcos(πx)π+sin(πx)π2 I=[−xcos(πx)π+sin(πx)π2]0−1+[−xcos(πx)π+sin(πx)π2]10−[−xcos(πx)π+sin(πx)π2]321