wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of 2cosx dydx +4ysinx=sin2x is:

A
2ycosx=secx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ysec2x=secx+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2ysecx=secx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ysecx=sec2x+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C ysec2x=secx+c
2cosxdydx+4ysinx=2sinxcosx

dydx+2tanx.y=sinx

sec2xdydx+(2secx)(secxtanx)y=sec2xsinx

ddx(sec2xy)=secxtanx

d(sec2xy)=secxtanxdx

(sec2x.y)=secxtanxdx+c

ysec2x=secx+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon