The solution of D.E y2dydx+y2+1=0 is
y2y2+1dy=−dx⇒x+y=c+tan−1y
The general solution of the differential equation dydx=1+y21+x2 is
Solution of the equation (1+x2)dy=(1+y2)dx is-
The general solution of dydx+ytanx=secx is (a) y secx=tanx+C (b) y tanx=secx+C (c) tanx=y tanx+C (d) x secx=tany+C