The correct option is D y=xtan(c+sin−1√x2+y2)
xdx+ydyxdy−ydx=√1−x2−y2x2+y2
⇒xdx+ydy√1−(x2+y2)=xdy−ydx√x2+y2
Since, d(tan−1(yx))=xdy−ydxx2+y2 and d(x2+y2)=2(xdx+ydy)
⇒12d(x2+y2)(√x2+y2)√1−(x2+y2)=xdy−ydxx2+y2=d(tan−1(yx))
Now, put x2+y2=z2 in the L.H.S., then,
⇒zdzz√1−z2=dtan−1(yx)
Integrating both sides, we get
sin−1z=tan−1(yx)+c⇒sin−1(√x2+y2)=tan−1(yx)+c
⇒√x2+y2=sin[tan−1(yx)+c]
⇒√x2+y2=cos[π2−tan−1(yx)+c]
⇒√x2+y2=cos[tan−1(yx)+C]
Also, y=xtan[sin−1(√x2+y2)+c]