The solution of differential equation (1−xy+x2y2)dx=x2dy is
[C is constant of integration]
xy=tan(log|Cx|)
(1−xy+x2y2)dx=x2dy ... (1)
Let xy=v
⇒y=vx
∴dydx=x.dvdx−vx2
⇒x2dy=xdv−vdx
So, from equation (1), (1−v+v2)dx=xdv−vdx
⇒(1+v2)dx=xdv
⇒∫dv1+v2=∫dxx
⇒tan−1v=log|x|+logC
⇒tan−1v=log|Cx|
⇒v=tan(log|Cx|)
⇒xy=tan(log|Cx|)