The correct option is
A y=tan2xcos2xGiven that:- cos2xdydx−(tan2x)y=cos4x,|x|<π4, where y(π6)=3√38
To find:- Solution of the given equation.
Solution:- ∵cos2x(dydx)−(tan2x)y=cos4x
⇒cos2x(dydx)−tan2xy=cos4x
⇒dydx−tan2xcos2x.y=cos4x
Now, we will compat the eqn i to
dydx+Py=B
∴P=f(x)
B=f(x)
So, Integration factor (I.F) =e∫Pdx
Here we will find the value of −tan2xcos2x
−∫tan2xcos2xdx
=−∫2sin2xcos2x(2cos2x)dx
=−∫2sin2xdxcos2x(1+cos2x)
Let, t=cos2x
⇒dt=−2sinxdx
⇒=∫dtt(1+t)
=∫1t−11+tdt
=ln∣∣∣t1+t∣∣∣
=ln∣∣∣cos2x1+cos2x∣∣∣
Now, putting ln∣∣∣cos2x1+cos2x∣∣∣ in I.F
∴ePdx
=eln∣∣∣cos2x1+cos2x∣∣∣
=cos2x1+cos2x
=cos2x2cos2x
Since, multiplying eqn i by I.F both side, we get.
cos2x2cos2x.dydx−sin2xcos4xy=cos2x2
cos2x2cos2x.dy−(sin2xcos4x)dx.y=cos2x2dx
⇒∫d(ycos2x2cos2x)=∫cos2x2dx
⇒y.cos2x2cos2x=sin2x4+C...........(II)
⇒3√38(1/22.34)=√38+c
⇒x=π6y=3√38
⇒√38=√38+c
∴c=0
putting the value of c in eq ii.
∴y.cos2x2cos2x=sin2x4+0
⇒y=sin2x.2cos2xcos2x.4
∴y=tan2x.cos2x2
∴2y=tan2x.cos2x
hence, the required solution is
2y=tan2x.cos2x