Solving Linear Differential Equations of First Order
The solution ...
Question
The solution of differential equation dydx+3y=cos2x is:
A
y=16+126(2sin2x+3cos2x)+ce−3x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y=16+126(2sin2x+3cos2x)+ce3x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=16+126(2sin2x−3cos2x)+ce3x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ay=16+126(2sin2x+3cos2x)+ce−3x dydx+3y=cos2x I.F.=e∫3dx=e3x ∴ the solution is y.e3x=12∫2e3xcos2xdx+c=12[e3x(1+cos2x)+c] =12[e3x3+e3x9+4][3cos2x+2sin2x]+c ⇒y=16+126(2sin2x+3cos2x)+ce−3x