The solution of differential equation x+ydydxy−xdydx=xcos2(x2+y2)y3 is
tan(x2+y2)=x2y2+C
cot(x2+y2)=x2y2+C
tan(x2+y2)=y2x2+C
cot(x2+y2)=y2x2+C
xdx+ydyy2(ydx−xdyy2)=x cos2(x2+y2)y3
=12∫d(x2+y2)cos2(x2+y2)=∫xyd(xy)
=12tan(x2+y2)=(xy)22+c
=tan(x2+y2)=x2y2+C
The differential equation representing the family of curves y = mx, where m is arbitrary constant, is