The correct option is B (y+1)2−(y+1)(x+1)+(x+1)2=c2
(2x−y+1)dx=−(2y−x+1)dy
⇒dydx=−(2x−y+1)(2y−x+1)
Let y=Y+k and x=X+h. Then
dydx=dYdX=−(2X−Y+2h−k+1)(2Y−X+2k−h+1)
Now, h and k can be chosen such that
2h−k+1=0 ⋯(i)
and 2k−h+1=0 ⋯(ii)
By solving these equations, h=−1, k=−1.
⇒dYdX=−(2X−Y)(2Y−X)
Now, it's a homogenous equation, so put Y=vX
⇒dYdX=v+XdvdX
⇒v+XdvdX=−(2−v)(2v−1)⇒XdvdX=−(2−v2v−1+v)
⇒XdvdX=−(2−v+2v2−v2v−1)⇒∫(2v−1)(2v2−2v+2)dv=−∫dXX
⇒12∫(2v−1)(v2−v+1)dv=−∫dXX⇒12ln∣∣v2−v+1∣∣=−ln|X|+ln|c|
⇒ln∣∣√(v2−v+1)X∣∣=ln|c|
⇒∣∣X√(v2−v+1)∣∣=|c|⇒√(Y2−XY+X2)=|c|
Now substituting Y=y−k and X=x−h, we get
(y+1)2−(y+1)(x+1)+(x+1)2=c2