The solution of differential equation sin(xdydx)cos y=dydx+sin y cos (x dydx) is
y = 0
cx−y=sin−1c
y=√x2−1−sin−1√x2−1x
sin(xdydx−y)=dydx⇒xdydx−y=sin−1(dydx) ⋯(i)
Again differentiating wrt x
dydx+xd2ydx2−dydx=1√1−(dydx)2×d2ydx2⇒d2ydx2⎛⎜
⎜
⎜⎝x−1√1−(dydx)2⎞⎟
⎟
⎟⎠=0⇒d2ydx2=0⇒dydx=c
From (i)
cx−y=sin−1c
c = 0, y = 0
or x=1√1−(dydx)2
⇒dydx=√x2−1x
From (i)
x√x2−1x−y=sin−1√x2−1x⇒y=√x2−1−sin−1√x2−1x