1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Linear Differential Equations of First Order
The solution ...
Question
The solution of differential equation
x
2
y
2
d
y
=
(
1
−
x
y
3
)
d
x
is
A
x
3
y
3
=
x
2
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
x
3
y
3
=
3
x
2
+
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x
3
y
3
=
x
2
+
x
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x
3
y
3
=
3
x
2
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
2
x
3
y
3
=
3
x
2
+
C
x
2
y
2
d
y
=
(
1
−
x
y
3
)
d
x
Divides the entire equation by
x
2
⇒
y
2
d
y
=
(
1
x
2
−
y
3
x
)
d
x
y
2
d
y
d
x
=
(
1
x
2
−
y
3
x
)
y
2
d
y
d
x
+
1
x
.
y
3
=
1
x
2
Let
y
3
=
x
⇒
3
y
2
d
y
d
x
=
d
z
d
x
⇒
y
2
d
y
d
x
=
1
3
.
d
z
d
x
substituting, we get
⇒
1
3
d
z
d
x
+
1
x
.
z
=
1
x
2
Here we will use a standard result,
A linear equation of the form
d
z
d
x
+
P
(
x
)
.
z
=
Q
(
x
)
has a solution,
z
e
∫
p
(
x
)
d
x
=
∫
Q
(
x
)
e
∫
p
(
x
)
d
x
d
x
Here,
⇒
d
z
d
x
+
3
x
.
z
=
3
x
2
⇒
P
(
x
)
=
3
x
,
Q
(
x
)
=
3
x
2
so the solution will be
⇒
z
e
3
∫
d
x
x
=
∫
3
x
2
e
3
∫
d
x
x
d
x
⇒
z
e
3
l
n
x
=
∫
3
x
2
e
3
l
n
x
d
x
⇒
z
e
l
n
x
3
=
∫
3
x
2
e
l
n
x
3
d
x
⇒
z
.
x
3
=
∫
3
x
2
x
3
d
x
=
3
∫
x
d
x
⇒
z
.
x
3
=
3
x
2
2
+
c
( c=integration constant )
Resubstituting,
z
=
y
3
we get
⇒
2
x
3
y
3
=
3
x
2
+
c
$( c'=2c )
Hence, solved.
Suggest Corrections
0
Similar questions
Q.
Solve the following differential equations:
d
y
d
x
+
x
y
=
x
3
y
3
Q.
The sum of first
n
terms of the series
1
+
(
1
+
x
)
y
+
(
1
+
x
+
x
2
)
y
2
+
(
1
+
x
+
x
2
+
x
3
)
y
3
+
.
.
.
is
Q.
x
3
y
3
+ 1