The solution of differential equation (x2+y2)dy=xydx is y=y(x). If
y(1)=1 and y(x0)=e, then x0 is:
A
√2(e2−1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
√2(e2+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
√3e
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
√e2+12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C√3e We have, (x2+y2)dy=xydx ⇒dydx=xyx2+y2 Substitute y=vx⇒dydx=v+xdvdx ⇒v+xdvdx=v1+v2 ⇒xdvdx=v1+v2−v=−v31+v2 ⇒1+v2v3dv=−dxx Integrating both sides we get, −12v2+logv=−logx+logc, where c is constant ⇒−12v2+log(vxc)=0 ⇒y=cex2/2y2 Now using y(1)=1⇒c=e−1/2 Also y(x0)=e⇒e=e−1/2+x20/2e2⇒1=−1/2+x20/2e2 ⇒x20=3e2⇒x0=√3e