The correct option is A xtanx−ytany−log(secxsecy)=c
xcos2ydx=ycos2xdy
⇒xcos2xdx=ycos2ydy
⇒xsec2xdx=ysec2ydy
On integration, we get
⇒xtanx−∫1⋅tanxdx =ytany−∫1⋅tanydy
⇒xtanx−logsecx=ytany−logsecy+c
⇒xtanx−ytany−(logsecx−logsecy)=c
⇒xtanx−ytany−log(secxsecy)=c.