The solution of differential equationxdydx=y-xcos2yx is
tanyx+logx=c
logxy+logx=c
logxy+tanx=c
tanxy+tanx=c
Explanation for the correct option:
Find the solution of the given differential equation
Given:xdydx=y-xcos2yx
⇒dydx=yx-cos2yx ….. (i)
Let y=vx
dydx=v+xdvdx …… (ii)
Equating, (i) and (ii) we get,
∴v+xdvdx=v-cos2v⇒xdvdx=-cos2v⇒dvcos2v=-dxx⇒sec2vdv=-dxx
Integrate both the sides,
∫sec2vdv=-∫dxx[∫sec2xdx=tanx,∫1xdx=logx]⇒tanv=-logx+c⇒tanv+logx=c[v=yx]⇒tanyx+logx=c
Hence, option (A) is the correct answer.