The correct option is C y=(c1+c2x)ex+c3e2x
The given equation can be wriitten as
(ddx−1)(ddx−1)(ddx−2)y=0
Let (ddx−1)(ddx−2)y=0
Then dvdx−u=0⇒u=c′1ex
Therefore, we have
(ddx−1)(dydx−2y)=c′1ex
Putting v=dydx−2y
We have dvdx−u=c′1ex
whose I.F is e−x so
ve−x=c′1x+c′2⇒v=(c′1x+c′2)ex
Hence dydx−2y=(c′1x+c′2)ex
which is again a linear equation with I.F e−2x
Hence
ye−2x=∫(c′1x+c′2)e−xdx+c3=−(c′1x+c′2)e−x−(c′1x+c′2)e−x−c′1xe−x+c3⇒y=(c1x+c2)ex+e2xc3