The correct options are
A 1x=2−y2+Ce−y22
B the solution of an equation which is reducible to linear equation.
C 1−2xx=−y2+Ce−y22
dydx(x2y3+xy)=1⇒dxdy=x2y3+xy
⇒dxdy−xy=y3x2⇒−dxdyx2+yx=−y3
Substitute v=1x⇒dvdy=−dxdyxy2
∴dvdy+vy=−y3
Let μ=e∫ydy=ey22
Multiplying both sides by μ, we get
ey22dvdy+ey22vy=−ey22y3
⇒ey22dvdy+ddx(ey22)v=−ey22y3
Using gdfdy+fdgdy=ddy(fg)
∴ddy(ey22v)=−ey22y3
⇒∫ddy(ey22v)dy=−∫ey22y3dy
⇒ey22v=−ey22(y2−2)+c⇒v=−y2+e−y22c+2=1x
⇒x=−ey22ey22(y2−2)−c⇒1−2xx=−y2+ce−y22