The solution of (ex+1)ydy=(y+1)exdx is
ey=C[(y+1)(ex+1)]
Consider the given integral.
(ex+1)ydy=(y+1)exdx
So,
ydyy+1=ex(ex+1)dx
(1−1y+1)dy=ex(ex+1)dx
Integrate both sides.
∫(1−1y+1)dy=∫ex(ex+1)dx
Let,
ex+1=u
exdx=du
Therefore,
∫(1−1y+1)dy=∫ex(ex+1)dx
y−ln(y+1)=∫dud
y−ln(y+1)=lnu+c
y−ln(y+1)=ln(ex+1)+lnC
y=ln(y+1)+ln(ex+1)+lnC
y=ln[(y+1)×(ex+1)×C]
Take anti-log on both the sides.
ey=C[(y+1)(ex+1)]
Hence, this is the required
result.