wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of sin2x (dydx)y=tanx is:

A
xysinx=c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
xytanx=c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=tanx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=tanx+c tanx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D y=tanx+c tanx
sin2xdydxy=tanxdydxycsc2x=csc2xtanx
Substituting t=ecsc2xdx=cosxsinx
We get
tdydxytcsc2x=tcsc2xtanxcosxsinxdydxycosxsinxcsc2x=sinxcosxcsc2x
Now substituting cosxsinxcsc2x=ddx(cosxsinx), we get
cosxsinxdydxyddx(cosxsinx)csc2x=sinxcosxcsc2x
Using formula gdfdx+fdgdx=ddx(fg)
ddx(cosxsinxy)=sinxcosxcsc2x
Integrating both sides
ddx(cosxsinxy)dx=sinxcosxcsc2xdxcosxsinxy=sinxcosx+cy=tanx+ctanx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Conjugate of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon