The correct option is D y=tanx+c √tanx
sin2xdydx−y=tanx⇒dydx−ycsc2x=csc2xtanx
Substituting t=e−∫csc2xdx=√cosxsinx
We get
tdydx−ytcsc2x=tcsc2xtanx⇒√cosxsinxdydx−y√cosxsinxcsc2x=√sinxcosxcsc2x
Now substituting −√cosxsinxcsc2x=ddx(√cosxsinx), we get
√cosxsinxdydx−yddx(√cosxsinx)csc2x=√sinxcosxcsc2x
Using formula gdfdx+fdgdx=ddx(fg)
ddx(√cosxsinxy)=√sinxcosxcsc2x
Integrating both sides
∫ddx(√cosxsinxy)dx=∫√sinxcosxcsc2xdx⇒√cosxsinxy=√sinxcosx+c⇒y=tanx+c√tanx