The correct option is A y2−x2=c(y2+x2)2
Given differential equation
(x3−3xy2)dx=(y3−3x2y)dy
⇒dydx=x3−3xy2y3−3x2y ...(1)
which is a homogeneous differential equation
So, put y=vx
dydx=v+xdvdx
So, eqn (1) becomes,
v+xdvdx=x3−3v2x3v3x3−3x3v
⇒v+xdvdx==1−3v2v3−3v
⇒xdvdx=1−v4v3−3v
⇒v3−3v1−v4dv=dxx
Integrating both sides,
∫v3−v1−v4dv−∫2v1−v4dv=∫dxx
⇒∫v(v2−1)(1−v2)(1+v2)dv−∫2v1−(v2)2dv=∫dxx
∫−v(1+v2)dv−∫2v1−(v2)2dv=∫dxx
Put v2=t ,
⇒2vdv=dt
∫−dt2(1+t)−∫dt1−t2=logx+logc
−12log|1+t|−12log|1+t1−t=logx+logc
⇒−log|1+t|+12log|1−t|=logx+logc
⇒−log|1+v2|+12log|1−v2|=logx+logc
⇒−log|x2+y2|+logx2+12log|y2−x2|−12logx2=logx+logc
⇒log√y2−x2x2+y2=logc
⇒√y2−x2x2+y2=c
⇒y2−x2=C(x2+y2)2