Solving Linear Differential Equations of First Order
The solution ...
Question
The solution of the differential equation (1+y2)+(x−etan−1y)dydx=0
A
(x−2)=ke−tan−1y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2xetan−1y=e2tan−1y+k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
xetan−1y=tan−1y+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
xe2tan−1y=etan−1y+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B2xetan−1y=e2tan−1y+k Consider, 1+y2+(x−etan−1y)dydx=0
⟹(1+y2)dx=(etan−1y−x)dy ⟹dxdy=etan−1y−x1+y2 ⟹dxdy+11+y2⋅x=etan−1y1+y2 Which is the linear different equation of the form dxdy+Rx=S, where R and S are functions of y or constant (s) ∴I.F=∫11+y2⋅dy=etan−1y Hence required solution is x.(I.F.)=∫etan−1y1+y2=(I.F)dy ⟹x.etan−1y=∫etan−1y1+y2(etan−1y)dy ⟹x.etan−1y=∫e2tan−1y1+y2dy....(1) Put t=tan−1y ∴dtdy=11+y2⇒dt=11+y2.dy ∴∫e2tan−1y1+y2dy=∫e2t.dt=e2t2+K Hence equation (1) becomes, xetan−1y=12e2t+K ⟹xetan−1y=12e2tan−1y+K ⟹2xetan−1y=e2tan−1y+K is the required solution.