The solution of the differential equation (3xy+y2)dx+(x2+xy)dy=0 is
x2(2xy+y2)=c2
x2(2xy-y2)=c2
x2(y2-2xy2)=c2
none of these
Explanation for the correct option
Given: 3xy+y2dx+x2+xydy=0
⇒3xy+y2dx=-x2+xydy⇒dydx=-3xy+y2x2+xy
Let y=vx
dydx=xdvdx+v
therefore
⇒xdvdx+v=-(3x2v+v2x2)(x2+x2v)⇒xdvdx=-v-v2-3v-v2(1+v)⇒xdvdx=-2v2-4v(1+v)⇒-2dxx=(1+v)dvv+2v
Integrating both sides
⇒-2log(x)=∫122+v+12vdv⇒-4log(x)=∫12+vdv+∫1vdv⇒-4log(x)=log(2+v)+log(v)+log(c)⇒log(x4)+log(2+v)+log(v)=log(c)⇒log(x4·(2+v)(v))=log(c)⇒logx2·2x+yy=log(c)
taking antilog both sides
x2·2xy+y2=c
Hence, option (A) is correct.