The solution of the differential equation 9ydydx+4x=0 is
y29+x24=c
y24+x29=c
y29-x24=c
y2+x29=c
Explanation for correct option
Given: 9ydydx+4x=0
⇒9ydydx=-4x⇒9y·dy=-4x·dx
integrating both sides
⇒∫9y·dy=-∫4x·dx⇒9y22+c1=-4x22+c2⇒9y22+4x22=c2
dividing both sides by 36
⇒9y236+4x236=236c2⇒x29+y24=c
Hence, option B is correct.