wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of the differential equation dydx+yxlogex=1x under the condition y=1 when x=e is

A
2y=logex+1logex
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y=logex+2logex
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ylogex=logex+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=logex+e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 2y=logex+1logex

dydx+yxlogex=1xdydx=1xlogex(y)=1xI.F=e1xlogexdx=eloge(logex)=logexG.S=yI.F=Q(I.F)dxylogex=1xlogexdyylogex=(logex)22+Cy=1,x=e1(1)=(1)22+CC=12

Solution: ylogex=(logex)22+122y=logex+1logex


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Equations Reducible to Standard Forms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon