Solving Linear Differential Equations of First Order
The solution ...
Question
The solution of the differential equation cos2xy1−(tan2x)y=cos4x,∀|x|<450 satisfies y(π/6)=3√38 is given by:
A
y=12(sin2x1−tan2x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y=(1−tan2x4sinxcosx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sinxcosx(1−tan2x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ay=12(sin2x1−tan2x) Given, cos2xy′−(tan2x)y=cos4xy′−(2tanx1−tan2xsec2x)y=cos2xI.F.=e∫−2tanx1−tan2xsec2xdx=eln(tan2x−1)=tan2x−1y′(tan2x−1)+(2tanxsec2x)y=cos2x(tan2x−1)d[y(tan2x−1)]=cos2x(tan2x−1)dxy(tan2x−1)=∫tan2x−11+tan2xdxy(tan2x−1)=−∫cos2xdxy(tan2x−1)=−sin2x2+Cy(π6)=3√383√38(13−1)=−√34+CC=0y=sin2x2(1−tan2x)