The correct option is C y=(C1x+C2)e−3x+x
Given DE is
(D2+6D+9)y=9x+6 ... (1)
A.E. is m2+6m+9=0
m=−3,−3
So, C.F. =(C1x+C2)e−3x
Now, P.I. = 1f(D)(Q(x))
=1(D+3)2(9x+6)
=19[1−2D3+3(D29)−.....](9x+6)
=19(9x+6)−23=x+23−23=x
General solution is
y=C.F.+P.I.
∴ y=(C1x+C2)e−3x+x