The correct option is C x−12(loge(y+3x))2=c
Given : dydx−y+3xloge(y+3x)+3=0
⇒dydx=y+3xloge(y+3x)−3⋯(1)
Let ln(y+3x)=z
Differentiating with respect to x,
1y+3x⋅(dydx+3)=dzdx
From equation (1), we get
⇒1z=dzdx⇒∫z dz=∫dx+C⇒z22=x+C⇒12(ln(y+3x))2=x+C∴x−12(ln(y+3x))2=c
Where c=−C