The correct option is A x2(cosy2−siny2−Ce−y2)=2
dydx=1xy[x2siny2+1]
⇒dxdy=xy[x2siny2+1]
⇒1x3dxdy−1x2y=ysiny2
Putting −1/x2=u, the above equation can be written as
dudy+2uy=2ysiny2
On comparing with dudx+Pu=Q,
We get, P=2y and Q=2ysiny2
Now, the I.F.=ey2
∴ Solution is uey2=∫2ysiny2ey2dy+C
=∫(sint)etdt+C
=12ey2(siny2−cosy2)+c
⇒2u=(siny2−cosy2)+Ce−y2,C=2c
⇒2=x2[cosy2−siny2−Ce−y2]