The correct option is A y(1+x2)=c+tan−1x
Given, dydx+2x1+x2y=1(1+x2)2
On comparing with dydx+Py=Q, we get
P=2x1+x2,Q=1(1+x2)2
Now, IF=e∫Pdx
=e∫2x1+x2dx=elog(1+x2)
=(1+x2)
∴ Solution of the given differential equation is
y(1+x2)=∫1(1+x2)2⋅(1+x2)dx+c
or y(1+x2)=∫11+x2dx+c
So, y(1+x2)=tan−1x+c