The correct option is A sin2y=xsiny+x22+c
Here, dydx=siny+xsin2y−xcosy
⇒cosydydx=siny+x2siny−x
Put siny=t
⇒dtdx=t+x2t−x⋯(i)
Let t=vx
⇒dtdx=xdvdx+v⋯(ii)
From (i) and (ii), we have
xdvdx+v=vx+x2vx−x=v+12v−1
∴xdvdx=v+12v−1−v=v+1−2v2+v2v−1
⇒2v−1−2v2+2v+1dv=dxx
⇒12⎛⎝2v−1v2−v−12⎞⎠dv=−dxx
Integrating both sides we have:
12ln∣∣v2−v−12∣∣+ln|x|=ln|c1|
ln|x⋅(v2−v−12)0.5|=ln|c1|
On solving, squaring and substituting back the initial variables v=tx=sinyx, we get
x2.(sin2yx2−sinyx−12)=c
Here, c21=c
sin2y=xsiny+x22+c