The correct option is B x2+y2=|x+y|
put y=vx
⇒dydx=v+xdvdx
The given equation becomes,
⇒v+xdvdx=(v2−2v−1v2+2v−1)
⇒xdvdx=−(v3+v2+v+1)v2+2v−1
⇒∫v2+2v−1(v+1)(v2+1)dv=−∫dxx⇒∫2v(v+1)−(v2+1)(v+1)(v2+1)dv=−∫dxx
⇒ln(v2+1)−ln|v+1|=ln|c|−ln|x|⇒(v2+1)|x||v+1|=|c|⇒x2+y2|y+x|=|c|
Given at x=1, y=1⇒c=±1.
Hence the required equation is x2+y2=|x+y|