wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of the differential equation dydx+y2secx=tanx2y, where 0x<π2 and y(0)=1, is given by:

A
y2=1+xsecx+tanx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=1+xsecx+tanx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=1xsecx+tanx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y2=1xsecx+tanx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D y2=1xsecx+tanx
dydx+y2secx=tanx2y
2ydydx+y2secx=tanx
Put y2=t2ydydx=dtdx
dtdx+tsecx=tanx
I.f=esecxdx=eIn(secx+tanx)=secx+tanx
dtdx(secx+tanx)+tsecx(secx+tanx)=tanx(secx+tanx)
d(t(secx+tanx))=tanx(secx+tanx)dx
t(secx+tanx)=secx+tanxx
t=1xsecx+tanx,y2=1xsecx+tanx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon