The solution of the differential equation dydx+y2secx=tanx2y, where 0≤x<π2 and y(0)=1, is given by:
A
y2=1+xsecx+tanx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=1+xsecx+tanx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=1−xsecx+tanx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y2=1−xsecx+tanx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dy2=1−xsecx+tanx dydx+y2secx=tanx2y 2ydydx+y2secx=tanx Put y2=t⇒2ydydx=dtdx dtdx+tsecx=tanx I.f=e∫secxdx=eIn(secx+tanx)=secx+tanx dtdx(secx+tanx)+tsecx(secx+tanx)=tanx(secx+tanx) ∫d(t(secx+tanx))=tanx(secx+tanx)dx t(secx+tanx)=secx+tanx−x t=1−xsecx+tanx,y2=1−xsecx+tanx