The correct option is C ey=(ex−1)+Ce−ex
Given equation can be rewritten as
dydx=exey(ex−ey)
⇒eydydx=e2x−exey
⇒eydydx+exey=e2x
Put ey=t⇒eydydx=dtdx
∴dtdx+ext=e2x
On comparing with dtdx+Pt=Q, we get
P=ex and Q=e2x
∴IF=e∫Pdx=e∫exdx=eex
Required solution is
t⋅eex=∫e2xeexdx+C
⇒eyeex=(ex−1)eex+C
⇒ey=(ex−1)+Ce−ex