The correct option is A (x+y−1)3=C(y−x−3)
Put x=X+h and y=Y+k in
dydx=−(x−2y+52x−y+4)
Such that
h−2k+5=0 &
2h−k+4=0
On solving, we have h=−1,k=2
⇒dydx=dYdX=−X−2Y(2X−Y)
Put Y=vX
⇒dYdX=v+XdvdX=1−2v−(2−v)
⇒XdvdX=1−2vv−2−v
⇒XdvdX=−(v2−1)v−2
⇒∫v−2(v2−1)dv=−∫dXX
⇒∫[−12(v−1)+32(v+1)]dv=−∫dXX
⇒−12ln|v−1|+32ln|v+1|=−ln|X|+ln|c|
⇒ln∣∣
∣∣(v+1)3/2(v−1)1/2∣∣
∣∣=ln∣∣∣cX∣∣∣
⇒ln∣∣
∣∣(Y+X)3/2X(Y−X)1/2∣∣
∣∣=ln∣∣∣cX∣∣∣
⇒|(Y+X)3/2|=|c(Y−X)1/2|
⇒(Y+X)3=C(Y−X) (let c2=C)
⇒(x+y−1)3=C(y−x−3)