The correct option is B ln|y−6−1|=x6+c
We have,
dydx+x5y=x5y7⋯(i)
It is a bernoulli equation with P(x)=x5, Q(x)=x5 and n=7
Let, u=y−6
⇒y=u−1/6
⇒dydx=−16u−7/6dudx
From equation (i),
−16u−7/6dudx+x5u−1/6=x5u−7/6
⇒dudx−6x5u=−6x5
⇒dudx=(u−1)6x5
⇒duu−1=6x5dx
Integrating both sides,
∫duu−1=∫6x5dx
⇒ln|u−1|=x6+c
⇒ln|y−6−1|=x6+c