dydx+x(x+y)=x3(x+y)3−1
⇒1(x+y)3(dydx)+x(x+y)2−x3=−1(x+y)3
Let t=1(x+y)2
Then dtdx=−2(x+y)3(1+dydx)
So, −12dtdx+tx−x3=0
⇒dtdx−2tx=−2x3
I.F.=e∫−2x dx=e−x2
Therefore, the solution is t.e−x2=∫−2x3.e−x2
⇒t.e−x2=e−x2(x2+1)+C
⇒1(x+y)2=(x2+1)+Cex2
∴a=1,b=2,c=1
∴a+b+c=4